HSP70: References

1. Gribaldo,S. et al. Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein. J. Bacteriol.181, 434-443 (1999). [PubMed]

2. Sharma,D. & Masison,D.C. Hsp70 structure, function, regulation and influence on yeast prions. Protein Pept. Lett.16, 571-581 (2009). [PubMed]

3. Sharma,D. et al. Function of SSA subfamily of Hsp70 within and across species varies widely in complementing Saccharomyces cerevisiae cell growth and prion propagation. PLoS. ONE.4, e6644 (2009). [PubMed]

4. Kampinga,H.H. & Craig,E.A. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nat. Rev. Mol. Cell Biol.11, 579-592 (2010). [PubMed]

5. Ritossa,F. Experimental activation of specific loci in polytene chromosomes of Drosophila. Exp. Cell Res.35, 601-607 (1963). DOI: 10.1016/0014-4827(64)90147-8

6. Ritossa,F. New puffs induced by temperature shock, DNP and salicilate in salivary chromosomes of D. melanogaster. Drosophila Information Service37, 122-123 (1963). [Drosophila Information Service]

7. Ritossa,F. A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia18, 571-573 (1962). DOI: 10.1007/BF02172188

8. Lindquist,S. & Craig,E.A. The heat-shock proteins. Annu. Rev. Genet.22, 631-677 (1988). [PubMed]

9. Jäättelä,M. Heat shock proteins as cellular lifeguards. Ann. Med.31, 261-271 (1999). [PubMed]

10. Craig,E.A. & Gross,C.A. Is hsp70 the cellular thermometer? Trends Biochem. Sci.16, 135-140 (1991). [PubMed]

11. Bardwell,J.C. & Craig,E.A. Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc. Natl. Acad. Sci. U. S. A81, 848-852 (1984). [PubMed]

12. Bausero,M.A., Gastpar,R., Multhoff,G., & Asea,A. Alternative mechanism by which IFN-gamma enhances tumor recognition: active release of heat shock protein 72. J. Immunol.175, 2900-2912 (2005). [PubMed]

13. Gastpar,R. et al. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res.65, 5238-5247 (2005). [PubMed]

14. Lancaster,G.I. & Febbraio,M.A. Exosome-dependent trafficking of HSP70: a novel secretory pathway for cellular stress proteins. J. Biol. Chem.280, 23349-23355 (2005). [PubMed]

15. Vega,V.L. et al. Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages. J. Immunol.180, 4299-4307 (2008). [PubMed]

16. Gehrmann,M. et al. Tumor-specific Hsp70 plasma membrane localization is enabled by the glycosphingolipid Gb3. PLoS. ONE.3, e1925 (2008). [PubMed]

17. Schilling,D. et al. Binding of heat shock protein 70 to extracellular phosphatidylserine promotes killing of normoxic and hypoxic tumor cells. FASEB J.23, 2467-2477 (2009). [PubMed]

18. Stangl,S. et al. Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody. Proc. Natl. Acad. Sci. U. S. A108, 733-738 (2011). [PubMed]

19. Brocchieri,L., Conway de,M.E., & Macario,A.J. hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC. Evol. Biol.8, 19 (2008). [PubMed]

20. Harrison,G.S. et al. Chromosomal location of human genes encoding major heat-shock protein HSP70. Somat. Cell Mol. Genet.13, 119-130 (1987). [PubMed]

21. Kampinga,H.H. et al. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress. Chaperones.14, 105-111 (2009). [PubMed]

22. Georg,R.C. & Gomes,S.L. Comparative expression analysis of members of the Hsp70 family in the chytridiomycete Blastocladiella emersonii. Gene386, 24-34 (2007). [PubMed]

23. Daugaard,M., Rohde,M., & Jaattela,M. The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett.581, 3702-3710 (2007). [PubMed]

24. Zhu,D., Dix,D.J., & Eddy,E.M. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes. Development124, 3007-3014 (1997). [PubMed]

25. Son,W.Y. et al. Repression of hspA2 messenger RNA in human testes with abnormal spermatogenesis. Fertil. Steril.73, 1138-1144 (2000). [PubMed]

26. Parsian,A.J. et al. The human Hsp70B gene at the HSPA7 locus of chromosome 1 is transcribed but non-functional. Biochim. Biophys. Acta1494, 201-205 (2000). [PubMed]

27. Dworniczak,B. & Mirault,M.E. Structure and expression of a human gene coding for a 71 kd heat shock ‘cognate’ protein. Nucleic Acids Res.15, 5181-5197 (1987). [PubMed]

28. Mizzen,L.A., Chang,C., Garrels,J.I., & Welch,W.J. Identification, characterization, and purification of two mammalian stress proteins present in mitochondria, grp 75, a member of the hsp 70 family and hsp 58, a homolog of the bacterial groEL protein. J. Biol. Chem.264, 20664-20675 (1989). [PubMed]

29. Otterson,G.A. et al. Stch encodes the ‘ATPase core’ of a microsomal stress 70 protein. EMBO J.13, 1216-1225 (1994). [PubMed]

30. Wan,T. et al. Novel heat shock protein Hsp70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant. Blood103, 1747-1754 (2004). [PubMed]

31. Ishikawa,K. et al. Prediction of the coding sequences of unidentified human genes. VIII. 78 new cDNA clones from brain which code for large proteins in vitro. DNA Res.4, 307-313 (1997). [PubMed]

32. Han,Z., Truong,Q.A., Park,S., & Breslow,J.L. Two Hsp70 family members expressed in atherosclerotic lesions. Proc. Natl. Acad. Sci. U. S. A100, 1256-1261 (2003). [PubMed]

33. Kabani,M. & Martineau,C.N. Multiple hsp70 isoforms in the eukaryotic cytosol: mere redundancy or functional specificity? Curr. Genomics9, 338-248 (2008). [PubMed]

34. Deuerling,E., Schulze-Specking,A., Tomoyasu,T., Mogk,A., & Bukau,B. Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature400, 693-696 (1999). [PubMed]

35. Mayer,M.P. & Bukau,B. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol. Life Sci.62, 670-684 (2005). [PubMed]

36. Smock,R.G., Blackburn,M.E., & Gierasch,L.M. Conserved, disordered C terminus of DnaK enhances cellular survival upon stress and DnaK in vitro chaperone activity. J. Biol. Chem.286, 31821-31829 (2011). [PubMed]

37. Castanié-Cornet,M.-P., Bruel,N., & Genevaux,P. Chaperone networking facilitates protein targeting to the bacterial cytoplasmic membrane. Biochim. Biophys. Actain press (2014). DOI: 10.1016/j.bbamcr.2013.11.007

38. Kawula,T.H. & Lelivelt,M.J. Mutations in a gene encoding a new Hsp70 suppress rapid DNA inversion and bgl activation, but not proU derepression, in hns-1 mutant Escherichia coli. J. Bacteriol.176, 610-619 (1994). [PubMed]

39. Genevaux,P., Georgopoulos,C., & Kelley,W.L. The Hsp70 chaperone machines of Escherichia coli: a paradigm for the repartition of chaperone functions. Mol. Microbiol.66, 840-857 (2007). [PubMed]

40. Yoshimune,K., Yoshimura,T., & Esaki,N. Hsc62, a new DnaK homologue of Escherichia coli. Biochem. Biophys. Res. Commun.250, 115-118 (1998). PubMed]

41. Lin,B.L. et al. Genomic analysis of the Hsp70 superfamily in Arabidopsis thaliana. Cell Stress. Chaperones.6, 201-208 (2001). [PubMed]

42. Rensing,S.A. & Maier,U.G. Phylogenetic analysis of the stress-70 protein family. J. Mol. Evol.39, 80-86 (1994). [PubMed]

43. Silflow,C.D., Sun,X., Haas,N.A., Foley,J.W., & Lefebvre,P.A. The Hsp70 and Hsp40 chaperones influence microtubule stability in Chlamydomonas. Genetics189, 1249-1260 (2011). [PubMed]

44. Baker,E.J., Keller,L.R., Schloss,J.A., & Rosenbaum,J.L. Protein synthesis is required for rapid degradation of tubulin mRNA and other deflagellation-induced RNAs in Chlamydomonas reinhardi. Mol. Cell Biol.6, 54-61 (1986). [PubMed]

45. Stolc,V., Samanta,M.P., Tongprasit,W., & Marshall,W.F. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes. Proc. Natl. Acad. Sci. U. S. A102, 3703-3707 (2005). [PubMed]

46. Yang,C., Compton,M.M., & Yang,P. Dimeric novel HSP40 is incorporated into the radial spoke complex during the assembly process in flagella. Mol. Biol. Cell16, 637-648 (2005). [PubMed]

47. Omran,H. et al. Ktu/PF13 is required for cytoplasmic pre-assembly of axonemal dyneins. Nature456, 611-616 (2008). [PubMed]

48. Flaherty,K.M., McKay,D.B., Kabsch,W., & Holmes,K.C. Similarity of the three-dimensional structures of actin and the ATPase fragment of a 70-kDa heat shock cognate protein. Proc. Natl. Acad. Sci. U. S. A88, 5041-5045 (1991). [PubMed]

49. Flaherty,K.M., Luca-Flaherty,C., & McKay,D.B. Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature346, 623-628 (1990). [PubMed]

50. Zhu,X. et al. Structural analysis of substrate binding by the molecular chaperone DnaK. Science272, 1606-1614 (1996). [PubMed]

51. Hartl,F.U. Molecular chaperones in cellular protein folding. Nature381, 571-579 (1996). [PubMed]

52. Munro,S. & Pelham,H.R. A C-terminal signal prevents secretion of luminal ER proteins. Cell48, 899-907 (1987). [PubMed]

53. Zhuravleva,A., Clerico,E.M., & Gierasch,L.M. An interdomain energetic tug-of-war creates the allosterically active state in Hsp70 molecular chaperones. Cell151, 1296-1307 (2012). [PubMed]

54. Kityk,R., Kopp,J., Sinning,I., & Mayer,M.P. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones. Mol. Cell48, 863-874 (2012). [PubMed]

55. Bertelsen,E.B., Chang,L., Gestwicki,J.E., & Zuiderweg,E.R. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc. Natl. Acad. Sci. U. S. A106, 8471-8476 (2009). [PubMed]

56. Harrison,C.J., Hayer-Hartl,M., Di,L.M., Hartl,F., & Kuriyan,J. Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science276, 431-435 (1997). [PubMed]

57. Liberek,K., Marszalek,J., Ang,D., Georgopoulos,C., & Zylicz,M. Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. U. S. A88, 2874-2878 (1991). [PubMed]

58. Craig,E.A., Huang,P., Aron,R., & Andrew,A. The diverse roles of J-proteins, the obligate Hsp70 co-chaperone. Rev. Physiol Biochem. Pharmacol.156, 1-21 (2006). [PubMed]

59. Ahmad,A. et al. Heat shock protein 70 kDa chaperone/DnaJ cochaperone complex employs an unusual dynamic interface. Proc. Natl. Acad. Sci. U. S. A108, 18966-18971 (2011). [PubMed]

60. Suzuki,H. et al. Peptide-binding sites as revealed by the crystal structures of the human Hsp40 Hdj1 C-terminal domain in complex with the octapeptide from human Hsp70. Biochemistry49, 8577-8584 (2010). [PubMed]

61. Hightower,L.E. & Guidon,P.T., Jr. Selective release from cultured mammalian cells of heat-shock (stress) proteins that resemble glia-axon transfer proteins. J. Cell Physiol138, 257-266 (1989). [PubMed]

62. Nickel,W. & Seedorf,M. Unconventional mechanisms of protein transport to the cell surface of eukaryotic cells. Annu. Rev. Cell Dev. Biol.24, 287-308 (2008). [PubMed]

63. Eder,C. Mechanisms of interleukin-1b release. Immunobiology214, 543-553 (2009). [PubMed]

64. Multhoff,G. & Hightower,L.E. Cell surface expression of heat shock proteins and the immune response. Cell Stress. Chaperones.1, 167-176 (1996). [PubMed]

65. Horvath,I. & Vigh,L. Cell biology: Stability in times of stress. Nature463, 436-438 (2010). [PubMed]

66. Horvath,I., Multhoff,G., Sonnleitner,A., & Vigh,L. Membrane-associated stress proteins: more than simply chaperones. Biochim. Biophys. Acta1778, 1653-1664 (2008). [PubMed]

67. Arispe,N. & De Maio,A. ATP and ADP modulate a cation channel formed by Hsc70 in acidic phospholipid membranes. J. Biol. Chem.275, 30839-30843 (2000). [PubMed]

68. Arispe,N., Doh,M., & De Maio,A. Lipid interaction differentiates the constitutive and stress-induced heat shock proteins Hsc70 and Hsp70. Cell Stress. Chaperones.7, 330-338 (2002). [PubMed]

69. De Maio,A. Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa. Cell Stress. Chaperones.16, 235-249 (2011). [PubMed]

70. Multhoff,G. et al. A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int. J. Cancer61, 272-279 (1995). [PubMed]

71. Multhoff,G. Heat shock protein 70 (Hsp70): membrane location, export and immunological relevance. Methods43, 229-237 (2007). [PubMed]

72. Pfister,K. et al. Patient survival by Hsp70 membrane phenotype: association with different routes of metastasis. Cancer110, 926-935 (2007). [PubMed]

73. Kleinjung,T. et al. Heat shock protein 70 (Hsp70) membrane expression on head-and-neck cancer biopsy-a target for natural killer (NK) cells. Int. J. Radiat. Oncol. Biol. Phys.57, 820-826 (2003). [PubMed]

74. Farkas,B. et al. Heat shock protein 70 membrane expression and melanoma-associated marker phenotype in primary and metastatic melanoma. Melanoma Res.13, 147-152 (2003). [PubMed]

75. Gehrmann,M. et al. Dual function of membrane-bound heat shock protein 70 (Hsp70), Bag-4, and Hsp40: protection against radiation-induced effects and target structure for natural killer cells. Cell Death. Differ.12, 38-51 (2005). [PubMed]

76. Gehrmann,M., Radons,J., Molls,M., & Multhoff,G. The therapeutic implications of clinically applied modifiers of heat shock protein 70 (Hsp70) expression by tumor cells. Cell Stress. Chaperones.13, 1-10 (2008). [PubMed]

77. Bausero,M.A., Page,D.T., Osinaga,E., & Asea,A. Surface expression of Hsp25 and Hsp72 differentially regulates tumor growth and metastasis. Tumour. Biol.25, 243-251 (2004). [PubMed]

78. Mambula,S.S. & Calderwood,S.K. Heat shock protein 70 is secreted from tumor cells by a nonclassical pathway involving lysosomal endosomes. J. Immunol.177, 7849-7857 (2006). [PubMed]

79. Nylandsted,J. et al. Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J. Exp. Med.200, 425-435 (2004). [PubMed]

80. Basu,S., Binder,R.J., Suto,R., Anderson,K.M., & Srivastava,P.K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int. Immunol.12, 1539-1546 (2000). [PubMed]

81. Multhoff,G. & Hightower,L.E. Distinguishing integral and receptor-bound heat shock protein 70 (Hsp70) on the cell surface by Hsp70-specific antibodies. Cell Stress. Chaperones.16, 251-255 (2011). [PubMed]

82. Pockley,A.G. & Multhoff,G. Cell stress proteins in extracellular fluids: friend or foe? Novartis. Found. Symp.291, 86-95 (2008). [PubMed]

83. Pockley,A.G., Muthana,M., & Calderwood,S.K. The dual immunoregulatory roles of stress proteins. Trends Biochem. Sci.33, 71-79 (2008). [PubMed]

84. Asea,A. et al. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat. Med.6, 435-442 (2000). [PubMed]

85. Srivastava,P.K. Cancer immunology. Methods12, 115-116 (1997). [PubMed]

86. Asea,A. et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem.277, 15028-15034 (2002). [PubMed]

87. Yaglom,J.A., Gabai,V.L., & Sherman,M.Y. High levels of heat shock protein Hsp72 in cancer cells suppress default senescence pathways. Cancer Res.67, 2373-2381 (2007). [PubMed]

88. Leu,J.I., Pimkina,J., Frank,A., Murphy,M.E., & George,D.L. A small molecule inhibitor of inducible heat shock protein 70. Mol. Cell36, 15-27 (2009). [PubMed]

89. Daugaard,M. et al. Lens epithelium-derived growth factor is an Hsp70-2 regulated guardian of lysosomal stability in human cancer. Cancer Res.67, 2559-2567 (2007). [PubMed]

90. Kirkegaard,T. et al. Hsp70 stabilizes lysosomes and reverts Niemann-Pick disease-associated lysosomal pathology. Nature463, 549-553 (2010). [PubMed]

91. Morishima,Y., Murphy,P.J., Li,D.P., Sanchez,E.R., & Pratt,W.B. Stepwise assembly of a glucocorticoid receptor.hsp90 heterocomplex resolves two sequential ATP-dependent events involving first hsp70 and then hsp90 in opening of the steroid binding pocket. J. Biol. Chem.275, 18054-18060 (2000). [PubMed]

92. Murphy,M.E. The HSP70 family and cancer. Carcinogenesis34, 1181-1188 (2013). [PubMed]

93. Multhoff,G. et al. Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J. Immunol.158, 4341-4350 (1997). [PubMed]

94. Multhoff,G. et al. A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress. Chaperones.6, 337-344 (2001). [PubMed]

95. Gross,C., Koelch,W., DeMaio,A., Arispe,N., & Multhoff,G. Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J. Biol. Chem.278, 41173-41181 (2003). [PubMed]

96. Gross,C., Hansch,D., Gastpar,R., & Multhoff,G. Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol. Chem.384, 267-279 (2003). [PubMed]

97. Gross,C. et al. Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress. Chaperones.8, 348-360 (2003). [PubMed]

98. Multhoff,G. et al. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp. Hematol.27, 1627-1636 (1999). [PubMed]

99. Botzler,C. et al. Differential Hsp70 plasma-membrane expression on primary human tumors and metastases in mice with severe combined immunodeficiency. Int. J. Cancer77, 942-948 (1998). [PubMed]

100. Moser,C. et al. Inhibition of tumor growth in mice with severe combined immunodeficiency is mediated by heat shock protein 70 (Hsp70)-peptide-activated, CD94 positive natural killer cells. Cell Stress. Chaperones.7, 365-373 (2002). [PubMed]

101. Multhoff,G. et al. Adoptive transfer of human natural killer cells in mice with severe combined immunodeficiency inhibits growth of Hsp70-expressing tumors. Int. J. Cancer88, 791-797 (2000). [PubMed]

102. Schwarz,R.E., Vujanovic,N.L., & Hiserodt,J.C. Enhanced antimetastatic activity of lymphokine-activated killer cells purified and expanded by their adherence to plastic. Cancer Res.49, 1441-1446 (1989). [PubMed]

103. Vujanovic,N.L. et al. Antitumor activities of subsets of human IL-2-activated natural killer cells in solid tissues. J. Immunol.154, 281-289 (1995). [PubMed]

104. Whiteside,T.L., Vujanovic,N.L., & Herberman,R.B. Natural killer cells and tumor therapy. Curr. Top. Microbiol. Immunol.230, 221-244 (1998). [PubMed]

105. Yasumura,S. et al. Immunotherapy of liver metastases of human gastric carcinoma with interleukin 2-activated natural killer cells. Cancer Res.54, 3808-3816 (1994). [PubMed]

106. Gastpar,R. et al. The cell surface-localized heat shock protein 70 epitope TKD induces migration and cytolytic activity selectively in human NK cells. J. Immunol.172, 972-980 (2004). [PubMed]

107. Shamovsky,I. & Nudler,E. New insights into the mechanism of heat shock response activation. Cell Mol. Life Sci.65, 855-861 (2008). [PubMed]

108. Schiller,P. et al. Cis-acting elements involved in the regulated expression of a human HSP70 gene. J. Mol. Biol.203, 97-105 (1988). [PubMed]

109. Akerfelt,M., Morimoto,R.I., & Sistonen,L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol.11, 545-555 (2010). [PubMed]

110. Pirkkala,L., Nykanen,P., & Sistonen,L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J.15, 1118-1131 (2001). [PubMed]

111. Harrison,C.J., Bohm,A.A., & Nelson,H.C. Crystal structure of the DNA binding domain of the heat shock transcription factor. Science263, 224-227 (1994). [PubMed]

112. Zorzi,E. & Bonvini,P. Inducible hsp70 in the regulation of cancer cell survival: analysis of chaperone induction, expression and activity. Cancers. (Basel)3, 3921-3956 (2011). [PubMed]

113. Mason,P.B., Jr. & Lis,J.T. Cooperative and competitive protein interactions at the hsp70 promoter. J. Biol. Chem.272, 33227-33233 (1997). [PubMed]

114. Wigmore,S.J. et al. De-repression of heat shock transcription factor-1 in interleukin-6- treated hepatocytes is mediated by downregulation of glycogen synthase kinase 3beta and MAPK/ERK-1. Int. J. Mol. Med.19, 413-420 (2007). [PubMed]

115. Whitesell,L. & Lindquist,S. Inhibiting the transcription factor HSF1 as an anticancer strategy. Expert. Opin. Ther. Targets.13, 469-478 (2009). [PubMed]

116. Stephanou,A. & Latchman,D.S. Transcriptional modulation of heat-shock protein gene expression. Biochem. Res. Int.2011, 238601 (2011). [PubMed]

117. Yu,H., Pardoll,D., & Jove,R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer9, 798-809 (2009). [PubMed]

118. Xie,Y. et al. NF-IL6 and HSF1 have mutually antagonistic effects on transcription in monocytic cells. Biochem. Biophys. Res. Commun.291, 1071-1080 (2002). [PubMed]

119. Stephanou,A., Isenberg,D.A., Akira,S., Kishimoto,T., & Latchman,D.S. The nuclear factor interleukin-6 (NF-IL6) and signal transducer and activator of transcription-3 (STAT-3) signalling pathways co-operate to mediate the activation of the hsp90beta gene by interleukin-6 but have opposite effects on its inducibility by heat shock. Biochem. J.330 ( Pt 1), 189-195 (1998). [PubMed]

120. Stephanou,A. & Latchman,D.S. Opposing actions of STAT-1 and STAT-3. Growth Factors23, 177-182 (2005). [PubMed]

121. Stephanou,A., Isenberg,D.A., Nakajima,K., & Latchman,D.S. Signal transducer and activator of transcription-1 and heat shock factor-1 interact and activate the transcription of the Hsp-70 and Hsp-90beta gene promoters. J. Biol. Chem.274, 1723-1728 (1999). [PubMed]

122. Akira,S. et al. Regulation of expression of the interleukin 6 gene: structure and function of the transcription factor NF-IL6. Ciba Found. Symp.167, 47-62 (1992). [PubMed]

123. Kinoshita,S., Akira,S., & Kishimoto,T. A member of the C/EBP family, NF-IL6 beta, forms a heterodimer and transcriptionally synergizes with NF-IL6. Proc. Natl. Acad. Sci. U. S. A89, 1473-1476 (1992). [PubMed]

124. Chou,S.D., Prince,T., Gong,J., & Calderwood,S.K. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS. ONE.7, e39679 (2012). [PubMed]

125. Westerheide,S.D., Anckar,J., Stevens,S.M., Jr., Sistonen,L., & Morimoto,R.I. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science323, 1063-1066 (2009). [PubMed]

126. Wu,G. et al. DeltaNp63alpha up-regulates the Hsp70 gene in human cancer. Cancer Res.65, 758-766 (2005). [PubMed]

127. Guzhova,I.V., Darieva,Z.A., Melo,A.R., & Margulis,B.A. Major stress protein Hsp70 interacts with NF-kB regulatory complex in human T-lymphoma cells. Cell Stress. Chaperones.2, 132-139 (1997). [PubMed]

128. Cappello,F. et al. Convergent sets of data from in vivo and in vitro methods point to an active role of Hsp60 in chronic obstructive pulmonary disease pathogenesis. PLoS. ONE.6, e28200 (2011). [PubMed]

129. Wang,Y., Chen,L., Hagiwara,N., & Knowlton,A.A. Regulation of heat shock protein 60 and 72 expression in the failing heart. J. Mol. Cell Cardiol.48, 360-366 (2010). [PubMed]

130. Rappa,F. et al. HSP-molecular chaperones in cancer biogenesis and tumor therapy: an overview. Anticancer Res.32, 5139-5150 (2012). [PubMed]

131. Ciocca,D.R. & Calderwood,S.K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress. Chaperones.10, 86-103 (2005). [PubMed]

132. Visone,R. & Croce,C.M. MiRNAs and cancer. Am. J. Pathol.174, 1131-1138 (2009). [PubMed]

133. Spizzo,R., Nicoloso,M.S., Croce,C.M., & Calin,G.A. SnapShot: MicroRNAs in Cancer. Cell137, 586 (2009). [PubMed]

134. Yin,C., Salloum,F.N., & Kukreja,R.C. A novel role of microRNA in late preconditioning: upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ. Res.104, 572-575 (2009). [PubMed]

135. Frisan,E. et al. Defective nuclear localization of Hsp70 is associated with dyserythropoiesis and GATA-1 cleavage in myelodysplastic syndromes. Blood119, 1532-1542 (2012). [PubMed]

136. Hohfeld,J., Minami,Y., & Hartl,F.U. Hip, a novel cochaperone involved in the eukaryotic Hsc70/Hsp40 reaction cycle. Cell83, 589-598 (1995). [PubMed]

137. Connell,P. et al. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell Biol.3, 93-96 (2001). [PubMed]

138. Ballinger,C.A. et al. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell Biol.19, 4535-4545 (1999). [PubMed]

139. Hernandez,M.P., Sullivan,W.P., & Toft,D.O. The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J. Biol. Chem.277, 38294-38304 (2002). [PubMed]

140. Takayama,S. & Reed,J.C. Molecular chaperone targeting and regulation by BAG family proteins. Nat. Cell Biol.3, E237-E241 (2001). [PubMed]

141. Shomura,Y. et al. Regulation of Hsp70 function by HspBP1: structural analysis reveals an alternate mechanism for Hsp70 nucleotide exchange. Mol. Cell17, 367-379 (2005). [PubMed]

142. Tzankov,S., Wong,M.J., Shi,K., Nassif,C., & Young,J.C. Functional divergence between co-chaperones of Hsc70. J. Biol. Chem.283, 27100-27109 (2008). [PubMed]

143. Adler,V., Schaffer,A., Kim,J., Dolan,L., & Ronai,Z. UV irradiation and heat shock mediate JNK activation via alternate pathways. J. Biol. Chem.270, 26071-26077 (1995). [PubMed]

144. Dubois,M.F. & Bensaude,O. MAP kinase activation during heat shock in quiescent and exponentially growing mammalian cells. FEBS Lett.324, 191-195 (1993). [PubMed]

145. Morimoto,R.I. Cells in stress: transcriptional activation of heat shock genes. Science259, 1409-1410 (1993). [PubMed]

146. Park,H.S., Lee,J.S., Huh,S.H., Seo,J.S., & Choi,E.J. Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J.20, 446-456 (2001). [PubMed]

147. Park,H.S. et al. Heat shock protein hsp72 is a negative regulator of apoptosis signal-regulating kinase 1. Mol. Cell Biol.22, 7721-7730 (2002). [PubMed]

148. Gabai,V.L. et al. Hsp70 prevents activation of stress kinases. A novel pathway of cellular thermotolerance. J. Biol. Chem.272, 18033-18037 (1997). [PubMed]

149. Mosser,D.D. et al. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Mol. Cell Biol.20, 7146-7159 (2000). [PubMed]

150. Gao,Y. et al. Heat shock protein 70 together with its co-chaperone CHIP inhibits TNF-alpha induced apoptosis by promoting proteasomal degradation of apoptosis signal-regulating kinase1. Apoptosis.15, 822-833 (2010). [PubMed]

151. Jang,K.W. et al. The C-terminus of Hsp70-interacting protein promotes Met receptor degradation. J. Thorac. Oncol.6, 679-687 (2011). [PubMed]

152. Birchmeier,C., Birchmeier,W., Gherardi,E., & Vande Woude,G.F. Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol.4, 915-925 (2003). [PubMed]

153. Li,Y., Kang,X., & Wang,Q. HSP70 decreases receptor-dependent phosphorylation of Smad2 and blocks TGF-beta-induced epithelial-mesenchymal transition. J. Genet. Genomics38, 111-116 (2011). [PubMed]

154. Beere,H.M. et al. Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat. Cell Biol.2, 469-475 (2000). [PubMed]

155. Lee,J.S., Lee,J.J., & Seo,J.S. HSP70 deficiency results in activation of c-Jun N-terminal Kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J. Biol. Chem.280, 6634-6641 (2005). [PubMed]

156. Ravagnan,L. et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat. Cell Biol.3, 839-843 (2001). [PubMed]

157. Koren,J., III et al. Facilitating Akt clearance via manipulation of Hsp70 activity and levels. J. Biol. Chem.285, 2498-2505 (2010). [PubMed]

158. Mao,H. et al. hsp72 inhibits focal adhesion kinase degradation in ATP-depleted renal epithelial cells. J. Biol. Chem.278, 18214-18220 (2003). [PubMed]

159. Yang,X. et al. Hsp70 promotes chemoresistance by blocking Bax mitochondrial translocation in ovarian cancer cells. Cancer Lett.321, 137-143 (2012). [PubMed]

160. Teng,Y., Ngoka,L., Mei,Y., Lesoon,L., & Cowell,J.K. HSP90 and HSP70 proteins are essential for stabilization and activation of WASF3 metastasis-promoting protein. J. Biol. Chem.287, 10051-10059 (2012). [PubMed]

161. Suzuki,M. et al. BAG3 (BCL2-associated athanogene 3) interacts with MMP-2 to positively regulate invasion by ovarian carcinoma cells. Cancer Lett.303, 65-71 (2011). [PubMed]

162. Walsh,N. et al. RNAi knockdown of Hop (Hsp70/Hsp90 organising protein) decreases invasion via MMP-2 down regulation. Cancer Lett.306, 180-189 (2011). [PubMed]

163. Lee,K.J. et al. Release of heat shock protein 70 (Hsp70) and the effects of extracellular Hsp70 on matric metalloproteinase-9 expression in human monocytic U937 cells. Exp. Mol. Med.38, 364-374 (2006). [PubMed]

164. Triantafilou,M. & Triantafilou,K. Heat-shock protein 70 and heat-shock protein 90 associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide. Biochem. Soc. Trans.32, 636-639 (2004). [PubMed]

165. Wheeler,D.S. et al. Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir. Res.10, 31 (2009). [PubMed]

166. Matzinger,P. An innate sense of danger. Semin. Immunol.10, 399-415 (1998). [PubMed]

167. Bianchi,M.E. DAMPs, PAMPs and alarmins: all we need to know about danger. J. Leukoc. Biol.81, 1-5 (2007). [PubMed]

168. Asea,A., Kabingu,E., Stevenson,M.A., & Calderwood,S.K. HSP70 peptidembearing and peptide-negative preparations act as chaperokines. Cell Stress. Chaperones.5, 425-431 (2000). [PubMed]

169. Chase,M.A. et al. Hsp72 induces inflammation and regulates cytokine production in airway epithelium through a. J. Immunol.179, 6318-6324 (2007). [PubMed]

170. Paduch,R., Jakubowicz-Gil,J., & Kandefer-Szerszen,M. Expression of HSP27, HSP72 and MRP proteins in in vitro co-culture of colon tumour cell spheroids with normal cells after incubation with rhTGF- beta1 and/or CPT-11. J. Biosci.34, 927-940 (2009). [PubMed]

171. Ancrile,B., Lim,K.H., & Counter,C.M. Oncogenic Ras-induced secretion of IL6 is required for tumorigenesis. Genes Dev.21, 1714-1719 (2007). [PubMed]

172. Sparmann,A. & Bar-Sagi,D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell6, 447-458 (2004). [PubMed]

173. Theriault,J.R., Adachi,H., & Calderwood,S.K. Role of scavenger receptors in the binding and internalization of heat shock protein 70. J. Immunol.177, 8604-8611 (2006). [PubMed]

174. Basu,S., Binder,R.J., Ramalingam,T., & Srivastava,P.K. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity.14, 303-313 (2001). [PubMed]

175. Berwin,B. et al. Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. EMBO J.22, 6127-6136 (2003). [PubMed]

176. Delneste,Y. et al. Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity.17, 353-362 (2002). [PubMed]

177. Arnold-Schild,D. et al. Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J. Immunol.162, 3757-3760 (1999). [PubMed]

178. Singh-Jasuja,H. et al. Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis. J. Exp. Med.191, 1965-1974 (2000). [PubMed]

179. Park,J.S. et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem.279, 7370-7377 (2004). [PubMed]

180. Syrigos,K.N. et al. Clinical significance of heat shock protein-70 expression in bladder cancer. Urology61, 677-680 (2003). [PubMed]

181. Kaur,J., Srivastava,A., & Ralhan,R. Expression of 70-kDa heat shock protein in oral lesions: marker of biological stress or pathogenicity. Oral Oncol.34, 496-501 (1998). [PubMed]

182. Lazaris,A.C., Theodoropoulos,G.E., Aroni,K., Saetta,A., & Davaris,P.S. Immunohistochemical expression of C-myc oncogene, heat shock protein 70 and HLA-DR molecules in malignant cutaneous melanoma. Virchows Arch.426, 461-467 (1995). [PubMed]

183. Ralhan,R. & Kaur,J. Differential expression of Mr 70,000 heat shock protein in normal, premalignant, and malignant human uterine cervix. Clin. Cancer Res.1, 1217-1222 (1995). [PubMed]

184. Meng,L., Hunt,C., Yaglom,J.A., Gabai,V.L., & Sherman,M.Y. Heat shock protein Hsp72 plays an essential role in Her2-induced mammary tumorigenesis. Oncogene30, 2836-2845 (2011). [PubMed]

185. Khaleque,M.A. et al. Induction of heat shock proteins by heregulin beta1 leads to protection from apoptosis and anchorage-independent growth. Oncogene24, 6564-6573 (2005). [PubMed]

186. Rohde,M. et al. Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev.19, 570-582 (2005). [PubMed]

187. Chuma,M. et al. Expression profiling in multistage hepatocarcinogenesis: identification of HSP70 as a molecular marker of early hepatocellular carcinoma. Hepatology37, 198-207 (2003). [PubMed]

188. Abe,M. et al. Plasma levels of heat shock protein 70 in patients with prostate cancer: a potential biomarker for prostate cancer. Clin. Prostate Cancer3, 49-53 (2004). [PubMed]

189. Thomas,X. et al. Expression of heat-shock proteins is associated with major adverse prognostic factors in acute myeloid leukemia. Leuk. Res.29, 1049-1058 (2005). [PubMed]

190. Sun,X.F., Zhang,H., Carstensen,J., Jansson,A., & Nordenskjold,B. Heat shock protein 72/73 in relation to cytoplasmic p53 expression and prognosis in colorectal adenocarcinomas. Int. J. Cancer74, 600-604 (1997). [PubMed]

191. Lazaris,A.C. et al. Proliferating cell nuclear antigen and heat shock protein 70 immunolocalization in invasive ductal breast cancer not otherwise specified. Breast Cancer Res. Treat.43, 43-51 (1997). [PubMed]

192. Hwang,T.S. et al. Differential, stage-dependent expression of Hsp70, Hsp110 and Bcl-2 in colorectal cancer. J. Gastroenterol. Hepatol.18, 690-700 (2003). [PubMed]

193. Trieb,K. et al. Heat shock protein 72 expression in osteosarcomas correlates with good response to neoadjuvant chemotherapy. Hum. Pathol.29, 1050-1055 (1998). [PubMed]

194. Santarosa,M., Favaro,D., Quaia,M., & Galligioni,E. Expression of heat shock protein 72 in renal cell carcinoma: possible role and prognostic implications in cancer patients. Eur. J. Cancer33, 873-877 (1997). [PubMed]

195. Shiozaki,H. et al. Clinical application of malignancy potential grading as a prognostic factor of human esophageal cancers. Surgery127, 552-561 (2000). [PubMed]

196. Kawanishi,K. et al. Prognostic significance of heat shock proteins 27 and 70 in patients with squamous cell carcinoma of the esophagus. Cancer85, 1649-1657 (1999). [PubMed]

197. Malusecka,E., Zborek,A., Krzyzowska-Gruca,S., & Krawczyk,Z. Expression of heat shock proteins HSP70 and HSP27 in primary non-small cell lung carcinomas. An immunohistochemical study. Anticancer Res.21, 1015-1021 (2001). [PubMed]

198. Athanassiadou,P. et al. Expression of p53, bcl-2 and heat shock protein (hsp72) in malignant and benign ovarian tumours. Eur. J. Cancer Prev.7, 225-231 (1998). [PubMed]

199. Chen,X., Tao,Q., Yu,H., Zhang,L., & Cao,X. Tumor cell membrane-bound heat shock protein 70 elicits antitumor immunity. Immunol. Lett.84, 81-87 (2002). [PubMed]

200. Multhoff,G., Botzler,C., Wiesnet,M., Eissner,G., & Issels,R. CD3- large granular lymphocytes recognize a heat-inducible immunogenic determinant associated with the 72-kD heat shock protein on human sarcoma cells. Blood86, 1374-1382 (1995). [PubMed]

201. Stangl,S., Wortmann,A., Guertler,U., & Multhoff,G. Control of metastasized pancreatic carcinomas in SCID/beige mice with human IL-2/TKD-activated NK cells. J. Immunol.176, 6270-6276 (2006). [PubMed]

202. Gehrmann,M. et al. Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: a tumor specific recognition structure for the cytolytic activity of autologous NK cells. Haematologica88, 474-476 (2003). [PubMed]

203. Gabai,V.L., Budagova,K.R., & Sherman,M.Y. Increased expression of the major heat shock protein Hsp72 in human prostate carcinoma cells is dispensable for their viability but confers resistance to a variety of anticancer agents. Oncogene24, 3328-3338 (2005). [PubMed]

204. Pocaly,M. et al. Overexpression of the heat-shock protein 70 is associated to imatinib resistance in chronic myeloid leukemia. Leukemia21, 93-101 (2007). [PubMed]

205. Duval,A. et al. Expression and prognostic significance of heat-shock proteins in myelodysplastic syndromes. Haematologica91, 713-714 (2006). [PubMed]

206. Heyman,M.R. Recent advances in biology and treatment of myelodysplasia. Curr. Opin. Oncol.3, 44-53 (1991). [PubMed]

207. Svitalkova,T. et al. A3.30 Plasma level of HSP70 protein is increased in czech patients with idiopathic inflammatory myopathy. Ann. Rheum. Dis.73 Suppl 1, A54 (2014). [PubMed]

208. Dong,J. et al. Increased expression of heat shock protein 70 in chronic obstructive pulmonary disease. Int. Immunopharmacol.17, 885-893 (2013). [PubMed]

209. Boiocchi,C. et al. Are Hsp70 protein expression and genetic polymorphism implicated in multiple sclerosis inflammation? J. Neuroimmunol.268, 84-88 (2014). [PubMed]

210. Chen,J. et al. Crohn’s disease and polymorphism of heat shock protein gene HSP70-2 in the Chinese population. J. Gastroenterol. Hepatol.28, 814-818 (2013). [PubMed]

211. Li,Z. et al. Heat shock protein 70 acts as a potential biomarker for early diagnosis of heart failure. PLoS. ONE.8, e67964 (2013). [PubMed]

212. Jenei,Z.M. et al. Elevated extracellular HSP70 (HSPA1A) level as an independent prognostic marker of mortality in patients with heart failure. Cell Stress. Chaperones.18, 809-813 (2013). [PubMed]

213. Lee,J.H. et al. Induction of the unfolded protein response and cell death pathway in Alzheimer’s disease, but not in aged Tg2576 mice. Exp. Mol. Med.42, 386-394 (2010). [PubMed]

214. Holtz,W.A. & O’Malley,K.L. Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J. Biol. Chem.278, 19367-19377 (2003). [PubMed]

215. Kroeger,H. et al. Induction of endoplasmic reticulum stress genes, BiP and chop, in genetic and environmental models of retinal degeneration. Invest Ophthalmol. Vis. Sci.53, 7590-7599 (2012). [PubMed]

216. Hoozemans,J.J., van Haastert,E.S., Nijholt,D.A., Rozemuller,A.J., & Scheper,W. Activation of the unfolded protein response is an early event in Alzheimer’s and Parkinson’s disease. Neurodegener. Dis.10, 212-215 (2012). [PubMed]

217. Rutkowski,D.T. & Kaufman,R.J. A trip to the ER: coping with stress. Trends Cell Biol.14, 20-28 (2004). [PubMed]

218. Erickson,R.R., Dunning,L.M., & Holtzman,J.L. The effect of aging on the chaperone concentrations in the hepatic, endoplasmic reticulum of male rats: the possible role of protein misfolding due to the loss of chaperones in the decline in physiological function seen with age. J. Gerontol. A Biol. Sci. Med. Sci.61, 435-443 (2006). [PubMed]

219. Nuss,J.E., Choksi,K.B., DeFord,J.H., & Papaconstantinou,J. Decreased enzyme activities of chaperones PDI and BiP in aged mouse livers. Biochem. Biophys. Res. Commun.365, 355-361 (2008). [PubMed]

220. Molvarec,A. et al. Serum heat shock protein 70 levels are decreased in normal human pregnancy. J. Reprod. Immunol.74, 163-169 (2007). [PubMed]

221. Molvarec,A. et al. Association of elevated serum heat-shock protein 70 concentration with transient hypertension of pregnancy, preeclampsia and superimposed preeclampsia: a case-control study. J. Hum. Hypertens.20, 780-786 (2006). [PubMed]

222. Fukushima,A. et al. Changes in serum levels of heat shock protein 70 in preterm delivery and pre-eclampsia. J. Obstet. Gynaecol. Res.31, 72-77 (2005). [PubMed]

223. Molvarec,A. et al. Association of increased serum heat shock protein 70 and C-reactive protein concentrations and decreased serum alpha(2)-HS glycoprotein concentration with the syndrome of hemolysis, elevated liver enzymes, and low platelet count. J. Reprod. Immunol.73, 172-179 (2007). [PubMed]

224. Madach,K. et al. Elevated serum 70 kDa heat shock protein level reflects tissue damage and disease severity in the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Eur. J. Obstet. Gynecol. Reprod. Biol.139, 133-138 (2008). [PubMed]

225. Henderson,B., Allan,E., & Coates,A.R. Stress wars: the direct role of host and bacterial molecular chaperones in bacterial infection. Infect. Immun.74, 3693-3706 (2006). [PubMed]

226. Singh,V.K. et al. Role for dnaK locus in tolerance of multiple stresses in Staphylococcus aureus. Microbiology153, 3162-3173 (2007). [PubMed]

227. Yamaguchi,Y., Tomoyasu,T., Takaya,A., Morioka,M., & Yamamoto,T. Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones. BMC. Microbiol.3, 16 (2003). [PubMed]

228. Hanawa,T. et al. The Listeria monocytogenes DnaK chaperone is required for stress tolerance and efficient phagocytosis with macrophages. Cell Stress. Chaperones.4, 118-128 (1999). [PubMed]

229. Takaya,A., Tomoyasu,T., Matsui,H., & Yamamoto,T. The DnaK/DnaJ chaperone machinery of Salmonella enterica serovar Typhimurium is essential for invasion of epithelial cells and survival within macrophages, leading to systemic infection. Infect. Immun.72, 1364-1373 (2004). [PubMed]

230. Nishimura,H., Emoto,M., Kimura,K., & Yoshikai,Y. Hsp70 protects macrophages infected with Salmonella choleraesuis against TNF-alpha-induced cell death. Cell Stress. Chaperones.2, 50-59 (1997). [PubMed]

231. Weng,D., Song,B., Koido,S., Calderwood,S.K., & Gong,J. Immunotherapy of radioresistant mammary tumors with early metastasis using molecular chaperone vaccines combined with ionizing radiation. J. Immunol.191, 755-763 (2013). [PubMed]

232. Jäättelä,M. Over-expression of hsp70 confers tumorigenicity to mouse fibrosarcoma cells. Int. J. Cancer60, 689-693 (1995). [PubMed]

233. Seo,J.S. et al. T cell lymphoma in transgenic mice expressing the human Hsp70 gene. Biochem. Biophys. Res. Commun.218, 582-587 (1996). [PubMed]

234. Volloch,V.Z. & Sherman,M.Y. Oncogenic potential of Hsp72. Oncogene18, 3648-3651 (1999). [PubMed]

235. Powers,M.V., Clarke,P.A., & Workman,P. Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell14, 250-262 (2008). [PubMed]

236. Peng,C. et al. HSPA9 overexpression inhibits apoptin-induced apoptosis in the HepG2 cell line. Oncol. Rep.29, 2431-2437 (2013). [PubMed]

237. Daugaard,M., Jaattela,M., & Rohde,M. Hsp70-2 is required for tumor cell growth and survival. Cell Cycle4, 877-880 (2005). [PubMed]

238. Matokanovic,M., Barisic,K., Filipovic-Grcic,J., & Maysinger,D. Hsp70 silencing with siRNA in nanocarriers enhances cancer cell death induced by the inhibitor of Hsp90. Eur. J. Pharm. Sci.50, 149-158 (2013). [PubMed]

239. Krause,S.W. et al. Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase i trial. Clin. Cancer Res.10, 3699-3707 (2004). [PubMed]

240. Tamura,Y., Peng,P., Liu,K., Daou,M., & Srivastava,P.K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science278, 117-120 (1997). [PubMed]

241. Udono,H. & Srivastava,P.K. Heat shock protein 70-associated peptides elicit specific cancer immunity. J. Exp. Med.178, 1391-1396 (1993). [PubMed]

242. Mayer,M.P., Brehmer,D., Gassler,C.S., & Bukau,B. Hsp70 chaperone machines. Adv. Protein Chem.59, 1-44 (2001). [PubMed]

243. Noessner,E. et al. Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J. Immunol.169, 5424-5432 (2002). [PubMed]

244. Murshid,A., Gong,J., Stevenson,M.A., & Calderwood,S.K. Heat shock proteins and cancer vaccines: developments in the past decade and chaperoning in the decade to come. Expert. Rev. Vaccines.10, 1553-1568 (2011). [PubMed]

245. Reitsma,D.J. & Combest,A.J. Challenges in the development of an autologous heat shock protein based anti-tumor vaccine. Hum. Vaccin. Immunother.8, 1152-1155 (2012). [PubMed]

246. Wood,C. et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet372, 145-154 (2008). [PubMed]

247. Testori,A. et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100-21 Study Group. J. Clin. Oncol.26, 955-962 (2008). [PubMed]

248. Nicchitta,C.V. Biochemical, cell biological and immunological issues surrounding the endoplasmic reticulum chaperone GRP94/gp96. Curr. Opin. Immunol.10, 103-109 (1998). [PubMed]

249. Castelli,C. et al. Human heat shock protein 70 peptide complexes specifically activate antimelanoma T cells. Cancer Res.61, 222-227 (2001). [PubMed]

250. Enomoto,Y. et al. Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell-tumor fusion cells. J. Immunol.177, 5946-5955 (2006). [PubMed]

251. Gong,J. et al. A heat shock protein 70-based vaccine with enhanced immunogenicity for clinical use. J. Immunol.184, 488-496 (2010). [PubMed]

252. Weng,D. et al. Induction of cytotoxic T lymphocytes against ovarian cancer-initiating cells. Int. J. Cancer129, 1990-2001 (2011). [PubMed]

253. Stangl,S. et al. In vivo imaging of CT26 mouse tumours by using cmHsp70.1 monoclonal antibody. J. Cell Mol. Med.15, 874-887 (2011). [PubMed]

254. Powers,M.V. et al. Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone? Cell Cycle9, 1542-1550 (2010). [PubMed]

255. Evans,C.G., Chang,L., & Gestwicki,J.E. Heat shock protein 70 (hsp70) as an emerging drug target. J. Med. Chem.53, 4585-4602 (2010). [PubMed]

256. Schlecht,R. et al. Functional analysis of Hsp70 inhibitors. PLoS. ONE.8, e78443 (2013). [PubMed]

257. Williamson,D.S. et al. Novel adenosine-derived inhibitors of 70 kDa heat shock protein, discovered through structure-based design. J. Med. Chem.52, 1510-1513 (2009). [PubMed]

258. Massey,A.J. et al. A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother. Pharmacol.66, 535-545 (2010). [PubMed]

259. Plowman,J. et al. Preclinical antitumor activity and pharmacological properties of deoxyspergualin. Cancer Res.47, 685-689 (1987). [PubMed]

260. Dhingra,K. et al. Phase II study of deoxyspergualin in metastatic breast cancer. Invest New Drugs12, 235-241 (1994). [PubMed]

261. Fewell,S.W., Day,B.W., & Brodsky,J.L. Identification of an inhibitor of hsc70-mediated protein translocation and ATP hydrolysis. J. Biol. Chem.276, 910-914 (2001). [PubMed]

262. Braunstein,M.J. et al. Antimyeloma Effects of the Heat Shock Protein 70 Molecular Chaperone Inhibitor MAL3-101. J. Oncol.2011, 232037 (2011). [PubMed]

263. Yang,C.S., Lambert,J.D., Ju,J., Lu,G., & Sang,S. Tea and cancer prevention: molecular mechanisms and human relevance. Toxicol. Appl. Pharmacol.224, 265-273 (2007). [PubMed]

264. Khan,N. & Mukhtar,H. Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett.269, 269-280 (2008). [PubMed]

265. Ermakova,S.P. et al. (-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res.66, 9260-9269 (2006). [PubMed]

266. Jinwal,U.K. et al. Chemical manipulation of hsp70 ATPase activity regulates tau stability. J. Neurosci.29, 12079-12088 (2009). [PubMed]

267. Hardy,J. & Orr,H. The genetics of neurodegenerative diseases. J. Neurochem.97, 1690-1699 (2006). [PubMed]

268. Williams,D.R., Ko,S.K., Park,S., Lee,M.R., & Shin,I. An apoptosis-inducing small molecule that binds to heat shock protein 70. Angew. Chem. Int. Ed Engl.47, 7466-7469 (2008). [PubMed]

269. Cho,H.J. et al. A small molecule that binds to an ATPase domain of Hsc70 promotes membrane trafficking of mutant cystic fibrosis transmembrane conductance regulator. J. Am. Chem. Soc.133, 20267-20276 (2011). [PubMed]

270. Miyata,Y. et al. Cysteine reactivity distinguishes redox sensing by the heat-inducible and constitutive forms of heat shock protein 70. Chem. Biol.19, 1391-1399 (2012). [PubMed]

271. Wang,A.M. et al. Inhibition of hsp70 by methylene blue affects signaling protein function and ubiquitination and modulates polyglutamine protein degradation. J. Biol. Chem.285, 15714-15723 (2010). [PubMed]

272. Congdon,E.E. et al. Methylthioninium chloride (methylene blue) induces autophagy and attenuates tauopathy in vitro and in vivo. Autophagy.8, 609-622 (2012). [PubMed]

273. O’Leary,J.C., III et al. Phenothiazine-mediated rescue of cognition in tau transgenic mice requires neuroprotection and reduced soluble tau burden. Mol. Neurodegener.5, 45 (2010). [PubMed]

274. Wischik,C.M., Betham,P., Wischik,D.J., & Seng,K.M. Tau aggregation inhibitor (TAI) therapy with Rember™ arrests disease progression in mild and moderate Alzheimer’s disease over 50 weeks. Alzheimer’s and Dementia4, T167 (2008). DOI:10.1016/j.jalz.2008.05.438

275. Schirmer,R.H., Adler,H., Pickhardt,M., & Mandelkow,E. “Lest we forget you–methylene blue…”. Neurobiol. Aging32, 2325-16 (2011). [PubMed]

276. Otvos,L., Jr. et al. Interaction between heat shock proteins and antimicrobial peptides. Biochemistry39, 14150-14159 (2000). [PubMed]

277. Kragol,G. et al. Identification of crucial residues for the antibacterial activity of the proline-rich peptide, pyrrhocoricin. Eur. J. Biochem.269, 4226-4237 (2002). [PubMed]

278. Kragol,G. et al. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry40, 3016-3026 (2001). [PubMed]

279. Otvos,L., Jr. et al. Designer antibacterial peptides kill fluoroquinolone-resistant clinical isolates. J. Med. Chem.48, 5349-5359 (2005). [PubMed]

280. Ostorhazi,E. et al. Rapid systemic and local treatments with the antibacterial peptide dimer A3-APO and its monomeric metabolite eliminate bacteria and reduce inflammation in intradermal lesions infected with Propionibacterium acnes and meticillin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents42, 537-543 (2013). [PubMed]

281. Otvos,L. et al. The Designer Proline-rich Antibacterial Peptide A3-APO Prevents Bacillus anthracis Mortality by Deactivating Bacterial Toxins. Protein Pept. Lett.21, 374-381 (2014). [PubMed]

282. Balaburski,G.M. et al. A modified HSP70 inhibitor shows broad activity as an anticancer agent. Mol. Cancer Res.11, 219-229 (2013). [PubMed]

283. Kaiser,M. et al. Antileukemic activity of the HSP70 inhibitor pifithrin-mu in acute leukemia. Blood Cancer J.1, e28 (2011). [PubMed]

284. Steele,A.J. et al. 2-Phenylacetylenesulfonamide (PAS) induces p53-independent apoptotic killing of B-chronic lymphocytic leukemia (CLL) cells. Blood114, 1217-1225 (2009). [PubMed]

285. French,J.B. et al. Hsp70/Hsp90 chaperone machinery is involved in the assembly of the purinosome. Proc. Natl. Acad. Sci. U. S. A110, 2528-2533 (2013). [PubMed]

286. Rousaki,A. et al. Allosteric drugs: the interaction of antitumor compound MKT-077 with human Hsp70 chaperones. J. Mol. Biol.411, 614-632 (2011). [PubMed]

287. Wadhwa,R. et al. Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res.60, 6818-6821 (2000). [PubMed]

288. Koya,K. et al. MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res.56, 538-543 (1996). [PubMed]

289. Chiba,Y. et al. MKT-077, localized lipophilic cation: antitumor activity against human tumor xenografts serially transplanted into nude mice. Anticancer Res.18, 1047-1052 (1998). [PubMed]

290. Propper,D.J. et al. Phase I trial of the selective mitochondrial toxin MKT077 in chemo-resistant solid tumours. Ann. Oncol.10, 923-927 (1999). [PubMed]

291. Guo,W. et al. Targeting GRP75 improves HSP90 inhibitor efficacy by enhancing p53-mediated apoptosis in hepatocellular carcinoma. PLoS. ONE.9, e85766 (2014). [PubMed]

292. Li,X. et al. Analogs of the Allosteric Heat Shock Protein 70 (Hsp70) Inhibitor, MKT-077, as Anti-Cancer Agents. ACS Med. Chem. Lett.4, (2013). [PubMed]

293. Abisambra,J. et al. Allosteric heat shock protein 70 inhibitors rapidly rescue synaptic plasticity deficits by reducing aberrant tau. Biol. Psychiatry74, 367-374 (2013). [PubMed]

294. Koren,J., III et al. Rhodacyanine derivative selectively targets cancer cells and overcomes tamoxifen resistance. PLoS. ONE.7, e35566 (2012). [PubMed]

295. Miyata,Y. et al. Synthesis and initial evaluation of YM-08, a blood-brain barrier permeable derivative of the heat shock protein 70 (Hsp70) inhibitor MKT-077, which reduces tau levels. ACS Chem. Neurosci.4, 930-939 (2013). [PubMed]

296. Boulanger,J., Faulds,D., Eddy,E.M., & Lingwood,C.A. Members of the 70 kDa heat shock protein family specifically recognize sulfoglycolipids: role in gamete recognition and mycoplasma-related infertility. J. Cell Physiol165, 7-17 (1995). [PubMed]

297. Mamelak,D. & Lingwood,C. The ATPase domain of hsp70 possesses a unique binding specificity for 3′-sulfogalactolipids. J. Biol. Chem.276, 449-456 (2001). [PubMed]

298. Park,H.J. et al. A soluble sulfogalactosyl ceramide mimic promotes Delta F508 CFTR escape from endoplasmic reticulum associated degradation. Chem. Biol.16, 461-470 (2009). [PubMed]

299. Arakawa,A., Handa,N., Shirouzu,M., & Yokoyama,S. Biochemical and structural studies on the high affinity of Hsp70 for ADP. Protein Sci.20, 1367-1379 (2011). [PubMed]

300. Clare,D.K. & Saibil,H.R. ATP-driven molecular chaperone machines. Biopolymers99, 846-859 (2013). [PubMed]